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An efficient synthesis of propargylamines using a silica gel
anchored copper chloride catalyst in an aqueous medium
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Abstract—The design and development of a silica gel anchored copper chloride heterogeneous catalyst for the synthesis of propar-
gylamines using an amine, an aldehyde, and an alkyne through C–H activation in water is described. Both aliphatic and aromatic
aldehydes and amines are used for the reaction. The catalyst was recovered quantitatively by simple filtration and reused several
times.
� 2007 Elsevier Ltd. All rights reserved.
Transition metal catalyzed multi-component reactions
are a powerful synthetic tools to access complex struc-
tures from simple precursors by one-pot procedures.
The three-component coupling of aldehydes, alkynes,
and amines (A3 coupling) is one of the best examples
of such a process and has received much attention.1

The resultant propargylamines obtained by A3 coupling
reactions are important synthetic intermediates for
potential therapeutic agents and polyfunctional amino
derivatives.2 Traditionally, these compounds are synthe-
sized by nucleophilic attack of lithium acetylides or
Grignard reagents on imines or their derivatives.3 How-
ever, these reagents are stoichiometric, highly moisture
sensitive, and require strictly controlled reaction condi-
tions. Besides, sensitive functionalities such as esters
are not tolerated. Thus there is a need for a general
and efficient synthetic protocol that is applicable to a
wide range of propargylamines. Several transition metal
catalysts such as silver salts,4 gold salts,5 copper salts,6 Ir
complexes7 and Cu/Ru8 bimetallic systems under homo-
geneous conditions have all been used for this reaction
and later their chiral equivalents were also reported.9

In our earlier reports we described the ultrasound
assisted synthesis of propargylamines using CuI as
catalyst.10 Recently, an A3 coupling reaction was
reported using immobilization of silver and copper salts
in an ionic liquid.11 Our group has reported the same
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using Cu–HAP and LDH–AuCl3 under heterogeneous
conditions.12

Even though some of the above reported procedures are
general, environmentally friendly and applicable to both
aliphatic and aromatic aldehydes and amines, there are
no reports on the recyclability of the catalyst in water.

The immobilization and chemical modification of
homogeneous catalysts to form heterogeneous ana-
logues of well-defined structures anchored to an insolu-
ble matrix is an area of current interest. The
development of heterogeneous catalysts for the synthesis
of fine chemicals in industrial processes is advantageous
over homogeneous catalysts, since heterogeneous cata-
lysts are easy to separate, and can potentially be
reused.13 The synthesis of mesoporous silica has greatly
expanded the possibilities for the design of open pore
structures.14 As a result of their large surface area,
well-defined pore size and pore shape, these materials
have great potential in industrial processes. The pore
walls of mesoporous materials are easily modified with
either purely inorganic or with hybrid, semi-organic,
functional groups.15

In the present work, silica gel anchored copper chlo-
ride16 was synthesized using 3-mercaptopropyltrimeth-
oxysilane as a spacer in order to explore its activity in
A3 coupling reactions.

The three-component coupling of benzaldehyde, piperi-
dine, and phenylacetylene using the Si(CH2)3SO3CuCl
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Table 1. Recovery and reuse of Si(CH2)3SO3CuCl for the three-
component coupling reaction of an aldehyde, an amine and an alkynea

Entry Run Isolated yield (%)

1 1 86
2 2 80
3 3 75
4 4 75

a Reaction conditions: aldehyde (1 mmol); amine (1.2 mmol); alkyne
(1.5 mmol); 50 mg of catalyst (5 mol %) and H2O (3 mL) at 100 �C
for 10 h.
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catalyst in water at 100 �C afforded the desired propar-
gylamine in 86% yield (Scheme 1). The reaction pro-
ceeded very well in water as well as in other organic
solvents such as toluene, THF, DMF, and acetonitrile.17

At room temperature, only a trace amount of the prod-
uct was formed and the reaction devoid of the catalyst
gave no product despite prolonged reaction times. The
optimum ratio of aldehyde, amine and alkyne was found
to be 1:1.2:1.5.

With optimal reaction conditions in hand, we further
examined the reusability of the catalyst for the A3 cou-
pling reaction. It is worth noting that the catalyst was
recovered quantitatively and reused four times with only
Table 2. Three-component coupling reaction of various aldehydes, with pip
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a slight decrease in activity (Table 1). Having established
the reusability of the catalyst, we carried out the cou-
pling reactions of a variety of aldehydes, amines, and
alkynes to understand the scope and generality of the
catalyst, and the results are shown in Tables 2–4.

Initially various aldehyde substrates were added with
piperidine and phenylacetylene. The aldehydes used
for this study included aromatic, aliphatic and hetero-
eridine, and phenylacetylenea

Time (h) Yieldb (%)

10 86
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Table 2 (continued)

Entry Aldehyde Product Time (h) Yieldb (%)

9 N

CHO

N

Py
Ph

10 80

10
O CHO

O

N

Ph

10 85

a Reaction conditions as exemplified in the typical experimental procedure.18

b Isolated yields after column chromatography.

Table 3. Three-component coupling reaction of benzaldehyde, various amines and phenylacetylenea

Entry Amine Product Time (h) Yieldb (%)

1
N
H

N
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Ph
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a Reaction conditions as exemplified in the typical experimental procedure.18

b Isolated yields after column chromatography.
c Products obtained in a diastereomeric ratio of 78:22.

Table 4. Three-component coupling reaction of benzaldehyde, piperidine, and various alkynesa

Entry Alkyne Product Time Yieldb

1
H3C

N

Ph

p-CH3C6H4

8 92

2 H3CO
N
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p-OCH3C6H4

8 86

3 H3CO N
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4 4
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a Reaction conditions as exemplified in typical experimental procedure.
b Isolated yields after column chromatography.
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cyclic examples, and the results are shown in Table 2.
Irrespective of the electronic nature of the substituent,
aromatic aldehydes reacted smoothly to give the
corresponding products in good yields (Table 2, entries
1–5). On the other hand, aliphatic aldehydes (entries
6–8) reacted rapidly and gave excellent yields without
any trimerization. In addition, heteroaromatic alde-
hydes displayed high reactivity and gave good yields of
products (entries 9–10).

To expand the scope of amine substrates, we used benz-
aldehyde and phenylacetylene as model substrates and
examined various secondary amines in the A3 coupling
reaction. The order of reactivity for these amines in
terms of yields and the reaction time was pyrrol-
idine > piperidine > dialkylamines > morpholine. Cyclic
amines gave the desired product in excellent yields
except morpholine (Table 2, entry 2). On the other hand,
(S)-ethyl prolinoate gave the desired product in 52%
yield with a diastereomeric ratio of 78:22.

Several terminal alkynes were examined for the coupling
using benzaldehyde and piperidine as the model sub-
strates (Table 3). p-Methyl and p-methoxy-substituted
phenylacetylenes were more reactive compared to p-pen-
tyl-substituted phenylacetylene and p-methoxynapthyl
acetylene (Table 4, entries 1–4). It is noteworthy that
with an aliphatic alkyne, the reaction was slow affording
a lower yield (Table 4, entry 5).

To conclude, we have developed a simple and efficient
method for the synthesis of propargylamines via C–H
activation using silica gel anchored CuCl in water with-
out using any organic solvent or co-catalyst. This proto-
col is an environmentally friendly process and can be
used to generate a diverse range of acetylenic amines
in good to excellent yields. The simple procedure for cat-
alyst preparation, easy recovery and reusability of the
catalyst is expected to contribute to its utilization for
the development of benign chemical process and
products.
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1-(3-Phenyl-1-propyl-prop-2-ynyl)-piperidine (Table 2,
entry 6): 1H NMR (300 MHz, CDCl3): d (ppm) 0.97 (t,
3H, J = 6.7), 1.40–1.68 (m, 10H), 2.44–2.55 (m, 4H), 3.45
(t, 1H, J = 7.36), 7.23–7.25 (m, 3H), 7.36–7.39 (m, 2H).
13C NMR (75 MHz, CDCl3): d (ppm) 13.92, 20.16, 24.44,
26.06, 35.52, 58.21, 85.50, 87.90, 123.34, 127.71, 128.13,
131.62. ESI-MS (m/z): 241 (M)+. Anal. Calcd for
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C17H23N: C, 84.59; H, 9.60; N 5.80. Found: C, 84.54; H,
9.63; N, 5.81.
1-(1-Isobutyl-3-phenyl-prop-2-ynyl)-piperidine (Table 2,
entry 7): 1H NMR (300 MHz, CDCl3): d (ppm) 1.10 (d,
6H, J = 6.6), 1.41–1.49 (m, 2H), 1.55–1.63 (m, 4H), 1.83–
1.97 (m, 1H), 2.33–2.45 (m, 2H), 2.56–2.65 (m, 4H), 2.94
(t, 1H, J = 7.6), 7.23–7.27 (m, 3H), 7.37–7.41 (m, 2H). 13C
NMR (75 MHz, CDCl3): d (ppm) 14.22, 20.42, 24.48,
26.27, 30.29, 50.44, 57.30, 86.15, 87.53, 123.44, 127.93,
128.29, 131.84. ESI-MS (m/z): 255 (M)+. Anal. Calcd for
C18H25N: C, 84.65; H, 9.87; N, 5.48. Found: C, 84.63; H,
9.91; N, 5.47.
4-(3-Phenyl-1-piperidin-1-yl-prop-2-ynyl)-pyridine (Table
2, entry 9): 1H NMR (300 MHz, CDCl3): d (ppm) 0.85–
0.88 (m, 2H), 1.39–1.48 (m, 4H), 2.45–2.50 (m, 4H), 4.79
(s, 1H), 7.28–7.32 (m, 5H), 7.48 (d, 2H, J = 4.6), 7.63 (d,
2H, J = 7.55). 13C NMR (75 MHz, CDCl3): d (ppm)
24.56, 26.27, 50.73, 62.39, 86.02, 88.22, 123.42, 127.47,
128.03, 128.45, 128.52, 131.85, 138.67. ESI-MS (m/z): 276
(M)+. Anal. Calcd for C19H20N2: C, 84.57; H, 7.29; N,
10.14. Found: C, 84.54; H, 7.32; N, 10.13.
(1,3-Diphenyl-prop-2-ynyl)-diisopropyl-amine (Table 3,
entry 4): 1H NMR (300 MHz, CDCl3): d (ppm) 1.04 (d,
6H, J = 6.6), 2.95–3.02 (m, 1H), 4.92 (s, 1H), 7.40–7.26
(m, 6H),7.55–7.50 (m, 2H), 7.67–7.62 (m, 2H), 13C NMR
(75 MHz, CDCl3): d (ppm) 20.66, 23.83, 46.59, 50.41,
85.82, 91.62, 123.90, 126.75, 127.78, 127.84, 128.29,
129.00, 131.30, 142.14. ESI-MS (m/z): 291 (M)+. Anal.
Calcd for C21H25N: C, 86.55; H, 8.65; N, 4.81. Found: C,
86.53; H, 8.69; N, 5.78.
1-(1-Phenyl-3-p-tolyl-prop-2-ynyl)-piperidine (Table 4,
entry 1): 1H NMR (300 MHz, CDCl3): d (ppm) 1.41–
1.63 (m, 2H), 1.54–1.63 (m, 4H), 2.51–2.56 (m, 4H), 2.38
(s, 3H), 4.76 (s, 1H), 7.1 (d, 2H, J = 8.0), 7.23–7.40 (m,
5H), 7.61 (d, 2H, J = 8.8). 13C NMR (75 MHz, CDCl3): d
(ppm) 21.22, 24.17, 25.90, 53.27, 62.07, 84.93, 87.63,
121.41, 128.38, 128.65, 128.77, 128.94, 137.78, 138.31.
ESI-MS (m/z): 289 (M)+. Anal. Calcd for C21H23N: C,
87.15; H, 8.01; N, 4. 84. Found: C, 87.14; H, 8.07; N, 4.80.
1-[3-(4-Methoxy-phenyl)-1-phenyl-prop-2-ynyl]-piperidine
(Table 4, entry 2): 1H NMR (300 MHz, CDCl3): d (ppm)
1.42–1.63 (m, 6H), 2.51–2.56 (m, 4H), 3.81 (s, 3H), 4.75 (s,
1H), 6.81 (d, 2H, J = 8.8), 7.23–7.43 (m, 5H), 7.59 (d, 2H,
J = 8. 8). 13C NMR (75 MHz, CDCl3): d (ppm) 24.33,
25.79, 50.55, 55.23, 62.40, 83.96, 88.02, 13.85, 127.62,
128.10, 128.72, 133.20, 159.47. ESI-MS (m/z): 305 (M)+.
Anal. Calcd for C21H23NO: C, 82.58; H, 7.59; N, 4.59.
Found: C, 82.54; H, 7.63; N, 4.56.
1-[3-(6-Methoxy-naphthalen-2-yl)-1-phenyl-prop-2-ynyl]-
piperidine (Table 4, entry 3): 1H NMR (300 MHz,
CDCl3): d (ppm) 1.42–1.49 (m, 2H), 1.57–1.68 (m, 4H),
2.57–2.64 (m, 4H), 3.91 (s, 3H), 5.28 (s,1H), 7.04–7.91 (m,
11H). 13C NMR (75 MHz, CDCl3): d (ppm) 24.28, 26.18,
50.82, 55.29, 62.23, 87.10, 90.81, 105.82, 118.18, 124.16,
127.54, 128.27, 128.34, 129.03, 129.60, 131.52, 132.95,
156.79. ESI-MS (m/z): 355 (M)+. Anal. Calcd for
C25H25NO: C, 84.47; H, 7.09; N, 3.94. Found: C, 84.43;
H, 7.13; N, 3.92.
1-[3-(4-Pentyl-phenyl)-1-phenyl-prop-2-ynyl]-piperidine
(Table 4, entry 4): 1H NMR (300 MHz, CDCl3): d (ppm)
0.87 (t, 3H, J = 6.5), 1.22–1.27 (m, 4H), 1.40–1.59 (m, 8H),
2.45–2.49 (m, 2H), 2.53–2.61 (m, 4H), 4.71 (s, 1H), 7.02 (d,
2H, J = 7.9), 7.22–7.34 (m, 5H) 7.53 (d, 2H, J = 7.7). 13C
NMR (75 MHz, CDCl3): d (ppm) 13.97, 18.77,22.55,
24.41, 26.13, 28.47, 28.97, 31.32, 43.23, 50.59, 61.96, 84.52,
87.82, 127.15, 127.23, 127.83, 128.23, 128.52, 128.91,
130.33, 139.21, 142.23. ESI-MS (m/z): 345 (M)+. Anal.
Calcd for C25H31N: C, 86.90; H, 9.04; N, 4.05. Found: C,
86.87; H, 9.08; N, 4.02.
1-(1-Phenyl-non-2-ynyl)-piperidine (Table 4, entry 5): 1H
NMR (300 MHz, CDCl3): d (ppm) 0.89–0.93 (m, 3H),
1.30–1.68 (m, 14H), 2.28–2.33 (m, 2H), 2.40–2.44 (m, 4H),
4.49 (s, 1H), 7.27–7.42 (m, 5H). 13C NMR (75 MHz,
CDCl3): d (ppm) 13.97, 22.40, 24.26, 25.88, 30.98, 31.27,
35.68, 50.44, 62.40, 78.52, 80.48, 127.54, 128.08, 128.67,
131.71. ESI-MS (m/z): 283 (M)+. Anal. Calcd for
C20H29N: C, 84.75; H, 10.31; N, 4.94. Found: C, 84.71;
H, 10.37; N, 4.91.
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